Transgenic expression of pancreatic secretory trypsin inhibitor-1 rescues SPINK3-deficient mice and restores a normal pancreatic phenotype.
نویسندگان
چکیده
Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibitor known as SPINK3, and the rat has two trypsin inhibitors commonly known as pancreatic secretory trypsin inhibitors I and II (PSTI-I and -II). Rat PSTI-I is a 61-amino acid protein that shares 65% sequence identity with mouse SPINK3. It was recently demonstrated that mice with genetic deletion of the Spink3 gene (Spink3(-/-)) do not survive beyond 15 days and lack normal pancreata because of pancreatic autophagy. We have shown that targeted transgenic expression of the rat Psti1 gene to acinar cells in mice [TgN(Psti1)] protects mice against caerulein-induced pancreatitis. To determine whether the autophagic phenotype and lethality in Spink3(-/-) mice were due to lack of pancreatic trypsin inhibitor, we conducted breeding studies with Spink3(+/-) heterozygous mice and TgN(Psti1) mice. We observed that, whereas Spink3(+/+), Spink3(+/-), and Spink3(-/-)/TgN(Psti1) mice had similar survival rates, no Spink3(-/-) mice survived longer than 1 wk. The level of expression of SPINK3 protein in acini was reduced in heterozygote mice compared with wild-type mice. Furthermore, endogenous trypsin inhibitor capacity was reduced in the pancreas of heterozygote mice compared with wild-type or knockout mice rescued with the rat Psti1 gene. Surprisingly, the lesser amount of SPINK3 present in the pancreata of heterozygote mice did not predispose animals to increased susceptibility to caerulein-induced acute pancreatitis. We propose that a threshold level of expression is sufficient to protect against pancreatitis.
منابع مشابه
Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome
The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To ci...
متن کاملPancreatic secretory trypsin inhibitor I reduces the severity of chronic pancreatitis in mice overexpressing interleukin-1β in the pancreas.
IL-1β is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1β in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1β transgenic [Tg(IL1β)] ...
متن کاملGenetic background of pancreatitis.
Trypsin activity is properly suppressed by pancreatic secretory trypsin inhibitor (PSTI), which is also known as serine protease inhibitor Kazal type 1 (SPINK1), thereby preventing damage to pancreatic acinar cells as a first line of defence. However, if trypsin activation exceeds the capacity of PSTI/SPINK1, a subsequent cascade of events leads to the activation of various proteases that damag...
متن کاملSilencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype.
In hydra, the endodermal epithelial cells carry out the digestive function together with the gland cells that produce zymogens and express the evolutionarily conserved gene Kazal1. To assess the hydra Kazal1 function, we silenced gene expression through double-stranded RNA feeding. A progressive Kazal1 silencing affected homeostatic conditions as evidenced by the low budding rate and the induce...
متن کاملChronic Pancreatitis in Mice Over-expressing Interleukin-1β in the
Pancreatic Secretory Trypsin Inhibitor 1 Reduces the Severity of 1 Chronic Pancreatitis in Mice Over-expressing Interleukin-1β in the 2 Pancreas 3 4 Joelle M.-J. Romac*, Rafiq A. Shahid*, Steve S. Choi, Gamze F. Karaca, Christoph B. 5 Westphalen, Timothy C. Wang, and Rodger A. Liddle 6 7 Department of Medicine, Duke University and Durham VA Medical Centers, North Carolina 8 27710. 9 Department ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 298 4 شماره
صفحات -
تاریخ انتشار 2010